

A lot of Soil Topics all in One Presentation

Jodi DeJong-Hughes

Regional Extension Educator, Willmar, MN

JDH@umn.edu

© 2018 Regents of the University of Minnesota. All rights reserved.

Soil Organic Matter in the US

Hargrove and Luxmoore

Organic Matter is ~58% Carbon

 May hear soil organic carbon used interchangeably with soil organic matter

 Builds resiliency in your fields

You can see carbon in the soil

Dynamic

We can change organic matter (ie carbon) with management

Available Water Content (inches)

Additional Days of Available Water (based on corn use of 0.25"/day)

OM Helps Build Soil Structure

Goal

Water Stable Aggregates

Photo Ray Weil

20 yrs of bluegrass, then 5 yrs conventional corn

Is Water Stable Structure Important?

#1 Natural Defense Against Soil Compaction

Tillage Destroys Structure

© 2018 Regents of the University of Minnesota. All rights reserved.

Tillage Depth and Aggressiveness

- Breaks up aggregates
- Leaves the soil unprotected
- Leads to clogged pores and crusts the soil surface

Standing residue acts like straws

Tillage Impacts on Infiltration

NT and ST increased water infiltration by 50-70% over conventional tillage systems.

Less Tillage = More Organic Matter (C)

G. Hoyt, 2005

Tillage releases C that cannot be used towards maintaining organic matter. CO_2 CO_{γ} CO_2

How do you measure CO₂ (carbon) loss?

with MR. GEM

USDA-ARS Morris, MN

MN Tillage-Carbon Study

Shallow Tillage Implements (1-4")

can be used in fall or spring

Points and Shanks

- Lifts and separates the soil
- Less destruction of soil structure

Field Cultivator

Shallow (3-4') Staggered rows Turns soil over Works well in dry soil

Sweep

Point

3-4" Depth

Even Mixing of Soil

Good Fertilizer and Weed Incorporation

6 -7 3 9 10 11 12 13 14 15 16 17 15 19 20 21 GOPHER STATE ONE CALLSAYS "CALL BEFORE YOU DIG"

Challenges: <30% residue remaining

Vertical Till

Strip Till

Field Cultivation

Potential for smearing in a wet soil

Vertical Till

Shallow (1-3") Classified as mulch till Gang angle <5%

Chops and Sizes Residue

- Smooths soil
- Residue management

Primary or Secondary Tillage

Fast: 9 to 12 mph

Increased erosion potential

Similar Designs

10 hp per linear foot (more for hills or dry soil)

Photos: Deann Pressley, KSU

Benefits of Vertical Tillage

Can get into wet fields

Leaves Some Residue Intact

Weed Pressure

Challenges for VT

- ~ Fertilizer incorporation
- ~ Stalks blowing around

Extremely Dry Soil

Disk

September 2012

Wavy Coulter
Shallow or High-Speed Disk

Levels and Firms the Seedbed

Great at Sizing Residue and Soil Clods

Too good

deere.com

Buries more residue than other 2° tillage tools

Challenges for a Disk

- Loss of soil structure
- Crusting
- Less residue
- Hurts water infiltration
- Shallow tillage pan

Disks in Dry Soil

Pros and Cons

Medium Depth Tillage Implements (6-9")

mainly used in fall, some spring purposes

Chisel Plow

- 6-9" deep
- Full field tillage
- Conventional tillage
- Varies in aggressiveness
- Slower speeds than shallow tillage

Chisel Plow Points

- Soil disturbance
- Depth
- Residue incorporation
- Smeared soil potential

Twisted Shovel vs. Sweep

Provided by Dick Wolkowski, UW)

Strip Tillage

Disturbs only 1/3 of the soil

Plant into tilled area

P and K applied 6-8" deep with strip till pass

N can be applied w/ST, at planting, or side dressed

- Potential for one-pass across field
- Less energy and less erosion than conventional systems

Success Starts with the Combine

Even distribution of chaff and straw =

- Even temp and moisture
- Better planter performance
- Even germination

Photo: Dorian Gatchell, MN Ag Services

Deep Tillage Implements (10-20")

used only in fall

Disks

- 8-15" deep
- More destructive forces
 - (very aggressive)
- Shears and presses soil

Where to Use a Disk

To break up clods and make a roadbed

Disk Ripper

Disk Ripper

- 10-16" deep
- Different sized shank options
- Very aggressive tillage
- Deep tillage but more residue remaining than chisel plow

Mold Board Plow

- 8-16" deep
- Most aggressive tillage
- Highest fuel use, erosion rate, and time requirement
- Very harmful to soil biology

Long-term MBP Soil

- Reduced structure turns into a brick
- Reduced infiltration
- Prone to ponding
- More water erosion

Variable Depth Tillage!!

Vertical Till and/or Chisel Plow

Reduced Tillage Concern

Yield Will Suffer

Photo courtesy of MN Ag Services

90% of Research Conducted in Farmer's Fields

WC Soybean (2010-2012) 3-Year Yield and Residue Averages

■ ST ■ VT ■ CP/VT rotation ■ DR/CP rotation

* Yields are not statistically different from each other. Residue was significantly different with an LSD (0.10) = 7.

NW Soybean Yields (2016 and 2018) Average of 4 Site Years

Soybean Yields (bu/ac)

Yield Variability and Statistics

Soybean yield response to tillage for 17 site years in E. North Dakota and NW Minnesota (2005 – 2012)

WC Corn Yields (2010-2012)

3-Year Yield and Residue Averages

* Yields are not statistically different from each other. Residue was statistically different with an LSD (0.10) = 4.

Average of 4 Site Years of Corn Yields

Corn Yields (bu/a)

Corn yield response to tillage for 18 site years across E. North Dakota and NW Minnesota through 2005 - 2012.

Weather Has More Affect on Yield Then Tillage

Tillage Costs per Acre

Assumptions:

- \$2.75 diesel
- \$20.00 labor
- 1,400-acre grain farm
- New tractor and implement overhead
- Not adding additional cost of chopping head
- Costs include overhead (depreciation, interest, insurance, housing and repairs), fuel and labor charges.

Source: July 2021, Farm Business Management, University of Illinois Extension

Soybean Tillage Costs

	No-till	1 pass ST	1 pass SpD	1 pass FC
First Implement	0	\$17.30	\$14.30	\$11.10
No-till or Conventional Planter	\$19.00	\$19.00	\$17.20	\$17.20
Total cost/ac	\$19.00	\$36.30	\$31.50	\$28.30

Corn Tillage Costs

	Strip till	CP + FC	DR + FC
First Implement	\$17.30	\$13.60	\$27.70
Liquid fert applicator (40')	0	\$ 7.70	\$ 7.70
Second Implement	0	\$11.10	\$11.10
No-till or Conventional Planter	\$19.00	\$17.20	\$17.20
Total cost/ac	\$36.30	\$49.60	\$63.70

Challenges

- Learning curve
- Not everyone can do it
- Resources
- Perennial weed shifts
- Skepticism from neighbors

Changes in Soil Structure Takes Time

Remember in dry years, there is "natural tillage"

Know Your Fields

How aggressive do you need to be?

- Moisture too much too little
- Crop rotation
- Soil type
- Topography

The Goal

Summary

- We've overestimated the importance of tillage affect on yield
- Each tillage pass costs money (\$11-30/ac)
- Increases soil erosion (3 20 T/ac)
- Lost soil costs money (\$25 per ton)

Cost per acre = \$\$\$

UPPER MIDWEST TILLAGE GUIDE

Jodi DeJong-Hughes Regional Extansion Educator University of Minnesota

Aaron Daigh Sol Scientist North Dakota State University

UNIVERSITY OF MINNESOTA EXTENSION

NDSU NORTH DAKOTA UNIVERSITY OF MINNESOTA EXTENSION Caley Gasch (North Dakota State University) and Jodi DeJong-Hughes (University of Minnesota Extension)

Soil Organic Matter Does Matter

What is soil organic matter?

of the most important components of soil. But what is it, exactly? One textbook definition is: The organic fraction of the soil that includes plant, animal, and microbial residues in various stages of decomposition, biomass of soil microorganisms, and substances produced by plant roots and other soil organisms (Weil & Brady, 2017). Basically, it is the material in soil that is derived from living organisms-whether it is a carcass, waste product, or other substance released from living organisms. Even though microbial cells are alive, they experience rapid population turnover - much like dead residues and are often included in the definition of soil organic matter.

Soil organic matter or soil organic carbon? Sometimes the terms soil organic matter and soil organic carbon are used interchangeably. That is because carbon makes up the majority of organic matter mass. Researchers estimate that carbon makes up about 58% of soil organic matter (Howard & Howard, 1990). Hydrogen, oxygen, nitrogen, phosphorous, and other nutrients make up the remaining mass. If you see a report that lists soil organic carbon (scientists often do this), you can convert it to organic matter by multiplying by 1.7.

We hear all the time that organic matter is one level in most mineral soils (Fig. 1).

The soil organic matter

ranges from trace amounts up to 20%. If a soil has 20% or more organic material to a depth of 16 inches, then that soil is considered organic, and is termed a peat or muck depending on the extent of decomposition. These soils are taxonomically described as a Histosol

Histosols make up only about 1% of soils worldwide (Buol et al., 2003), and most soils have a much lower content of soil organic matter. Soils in the Northern Great Plains of the

Figure 2. Soil organic matter content across the

Questions?

Jodi DeJong-Hughes z.umn.edu/TillageGuide z.umn.edu/SOMpub JDH@umn.edu @SoilLorax 🔰

Reduced Till Planter Settings

- Residue managers
- Sharp coulters/disk
- Everything in new and working order

Average temperatures of the three farms

Daigh et al, 2019 NDSU

Average water content of the three farms

Daigh et al, 2019 NDSU

Option – Move Soil Back up the Hill

Study conducted in Minnesota, US and Manitoba, CA

David Lobb, Treherne, Manitoba

Moving Soil Back Up the Hill

- 6-8 inches were moved back up the hill
- Yields were reduced in the lower area due to ponding and reduced soil structure
- Yields on slope were increased 24-48%

Reduced Tillage Concern #1

Reduced tilled fields won't warm-up or dry in time for early planting

Soybean Yield: Minnesota

Yields in areas of soil addition>eroded areas

Low yields in areas of soil removal, especially in the toeslope: soil disturbance, excessive spring moisture

Corn Yield: Minnesota

Yield differential in lower slope smaller than for soybean (affected by weather)

Yields in rehabilitated plots are uniform from the top to the bottom of the slope

Soil Landscape Rehabilitation: Manitoba

Lower Slope 🗲

← Upper Slope

*Significant at P<0.10, **Significant at P<0.05,

Slide from D. Lobb

Research Findings

4"of topsoil increased yields: 10 - 33% in wet years 39 - 133% in dry years

The cost of rehabilitation was recovered in 3-5 years.

David Lobb, Treherne, Manitoba

Shanked Strip Till Units

Best for fall use Banded nutrients More tillage Deeper tilled zone (6-8")

Don't forget to purchase rock trippers

Coulter Strip Till Units

Fall and Spring usage Fertilizer mixed in 5" x 5" Less aggressive tillage

Shank to Coulter option

To Chop or Not to Chop...

- Upright stalks:
 - Increases water infiltration
 - Dries out faster
 - Evenly traps snow
- Chopped stalks:
 - Decomposes faster
 - May leave mat of residue
 - Easier flow through ST machine

Spring vs. Fall ST

Fall

- Soil warming-up before planting
- Split the workload
- Chance to do more tillage in spring

Spring vs. Fall ST

Spring

- Benefit for low rain fall or sandy soils
- Potential for cooler, wetter soil at planting, cloddy seed bed

Use Starter Fertilizer

Grower Forgot To Turn 10-34-0 Switch Back On

10-34-0 at 7 gal/ac 152 bu/ac

> No Starter 142 bu/ac

Adding a 2nd Tillage Pass

Used in spring to "freshen-up" the berm

Coulters

Coulters

Other Options

**Buffalo*

Lilliston Rolling Cultivator

Subsoiler (Zone Till)

- 20" Depth
- In-row
- 30-50 hp per shank

Parabolic shank

Straight shank

Subsoiler Shanks

Deep Tillage Guidelines

- Work soil when dry. Soil should fracture and crumble down to the depth of shanks.
- Use most non-invasive, straight shank.
- Do not drive on ripped soil again. Use controlled traffic practices.

Tillage and Water Erosion

Measurements in cm

Sands

- Large pore space
- Little surface area
- Not able to hold as much water or nutrients

0.01 mm

Clays

- Plate-like structure
- Negatively charged
- Huge surface area (100,000 > than sand)

Photo - www.fei.com/image-gallery/kaolinite-claysheets

Hand Harvest

10' of row, 6 times per treatment x 3 treatments x 3 reps = 54 samples per field

Sugarbeet Tons per Acre

Tons per acre

No significant difference

Sugarbeet % Sugar per Acre

No significant difference

Summary

- No differences in
 - Tons/acre
 - % Sugar
 - % Extractable Sugar
 - Extractable Sugar/Ton
 - Extractable Sugar/acre
 - Sugar/acre
 - Purity
- ST may need a light secondary pass in spring if planting zone is not fit

Corn stalks from previous year

Fall 2021 Interesting Observation

Harvested, not tilled

Harvested, tilled

More Sugarbeet Research

- Jay Gudajtes of Minto, ND farmer
- Brian Ryberg of Buffalo Lake, MN farmer
- Brad Brummond, NDSU Extension
- Aaron Hoppe, NDSU

Nutrients in 1% Organic Matter

Nitrogen:	1,000 lbs x .95/lb	\$ 950
Phosphorus:	100 lbs x .95/lb	\$ 95
Potassium:	100 lbs x .71/lb	\$ 71
Sulfur:	100 lbs x 1.54/lb	\$ 154
Carbon:	11,600 lbs 30/ton	\$ 174

Value of 1% SOM Nutrients/Acre

~\$1,444

Assumptions:

2,000,000 lbs. soil in top 6 inches. 1% organic matter = 20,000 lbs.

Measurements with Cornell Sprinkle Infiltrometer on moist soil

Pounds of CO₂ Lost from Fall Tillage

Reicosky et al. 2005, Jeffers, MN

Bottom Line

We farm in a highly erodible region

~Keep the soil covered

Nitrogen Loss

Denitrification in a Saturated Soil

Can Lose **2-4** lbs of Nitrogen/ac/day

Photo Courtesy of Dave Franzen, NDSU