Managing Crap What's Next in Manure?

Dr. Daniel Andersen Agricultural & Biosystems Engineering dsa@iastate.edu

IOWA STATE UNIVERSITY

themanurescoop.blogspot.com

Outline

- Manure and Nutrient Flows
- Iowa Nutrient Budgets
- Selecting Application Rates
- Manure Variability and Uncertainty

Manure System Stages and Objectives

Stage 1: House Animals & Contain Manure

The structures and areas where the animals eat, sleep, and defecate. Manure should be contained and clean water diverted to avoid manure contact.

Stage 2: Manure Collection & Water Recycle Manure can be collected via scraping, flushing, belts, gravity fall, or similar. Pumping from temporary holding areas or conveyance of flush water. Belt movement or front-end loader transport of solid manure or manure solids.

Stage 3: Manure Storage & Treatment

Storages: lagoons, pits, tanks, holding ponds, stacking sheds, stockpiles, etc. Treatments: anaerobic & aerobic digestion, solid separation, nutrient recovery, etc.

Stage 4: Manure Transport to Utilization Hauling or pumping systems that move manure to the application field.

Stage 5: Manure Application or Utilization Land application to a crop or pasture. Sale of fertilizer or compost.

Understanding Manure Systems

Fundamental of Nutrient Management

Is My Livestock or Poultry Operation **Concentrating Nutrients?**

Determining Manure Application Rates

- Two parts
 - Supply (how much is in the manure)
 - Concentration
 - Availability
 - Volatilization
 - Demand (how much does the crop need)
 - Crop Rotation
 - Weather
 - Soil
- Nitrogen or Phosphorus Limited

Nutrient Supply

- Nutrient Availability
- Two types of nutrients in manure
 - Organic
 - Inorganic
- Organic nutrients must be mineralized to inorganic form to become available
 - Depends on manure type, soil temperatures, moisture conditions, storage length, etc.
 - Table values used to determine amount that will become available (for your assignment see manure nutrient utilization)

Iowa Nitrogen Availability Recommendations

				Manure type	Manure handling	Mineralization fa
Nitrogen Availability	for Differen	t Manure Sour	Ces	Swine	Eroch	0.50
	First Year	Second Year	Third Year	Swille	Anaerobic liquid Aerobic liquid	0.30
	Percent o	of Total Nitroge	en Applied	Beef	Solid without bedding	0.35
Beef Cattle (solid or liquid)	30-50	10	5	2001	Solid with bedding Anaerobic liquid	0.25 0.30
Dairy (solid or liquid)	30-50	10	5		Aerobic liquid	0.25
Liquid Swine (anaerobic pit)	90-100	0	0	Dairy	Solid without bedding Solid with bedding	0.35
Liquid Swine (anaerobic Iagoon)	90-100	0	0		Anaerobic liquid Aerobic liquid	0.30
Poultry (all species)	50-60	0-10	0	Sheep	Solid	0.25
From ISU publication PMR 1003	(Revised May	2016).		Poultry	Deep pit Solid with litter Solid without litter	0.60 0.60 0.60
				Horses	Solid with bedding	0.20

Mineralized organic nitrogen.

Amount mineralized (released to crops) during first cropping season after application of animal manure. Boxed value refers to Example 10-3.

Supply Nitrogen Volatilization

Correction Factors After Land Application of Manure								
Application Method	Incorporation	Correction Factor						
Direct Injection		0.98-1.00						
Broadcast (liquid/solid)	Immediate	0.95-0.99						
Broadcast (liquid)	None	0.75-0.90						
Broadcast (solid)	None	0.70-0.85						
Irrigation	None	0.60-0.75						
From ISU publication PMR 1003 (Revised May 2016).								

Calculating Manure Nutrient Supply

Available N = Total N x Availability x Volatilization

Pig Manure

60 lb N/1000 gallons Availability 90% Injection 99% retained

60 lb N/1000 gallons x 0.9 * 0.99 =53 lb available N/1000 gallons

Nutrient Demand 2 Methods

Yield Goal Method

- supply amount expected to be removed with harvested crop
- Used in Iowa Manure
 Management Plans as the maximum limit

Crop Response Method - Determines the optimal range based on cost of obtaining nutrients and crop response to nutrient

Yield Goal

Anne	ا ndix ۵5: C	Manure Management Plan Form	1 Various Crons ⁴		Page 5
Corn	Zone 1		Orchardgrass	38.0 lb/ton	Tuge 5
com	Zono 2	1.1 lb/bu	Tall forcuo	28.0 lb/ton	
	20112 2	1.110/00		38.0 10/1011	
	Zone 3	1.2 lb/bu	Switchgrass	21.0 lb/ton	
Corn silage		7.5 lb/ton	Vetch	56.0 lb/ton	
Soybeans		3.8 lb/bu	Red clover	43.0 lb/ton	
Oats		0.75 lb/bu	Perenial ryegrass	24.0 lb/ton	
Alfalfa		50.0 lb/ton	Timothy	25.0 lb/ton	
Wheat		1.3 lb/bu	Wheat straw	13.0 lb/ton	
Smooth bromegrass		40.0 lb/ton	Oat straw	12.0 lb/ton	
Sorghum-sudan		40.0 lb/ton			

The following map outlines the three zones for the corn nitrogen usage rates indicated in the Table 4. Zone 1 corresponds to the Moody soil association. Zone 2 corresponds to the Marshall, Monona-Ida-Hamburg , and Galva-Primghar-Sac soil associations. Zone 3 corresponds to the remaining soil associations.

How do we pick reasonable yields?

5-year average + 10% Or Ave of 4 of the last five years

Manure Management Plan Form									
Appendix	A8: Iowa Ag Sta	itistics County Co	orn and Soybear	n Yield Average	s, 2013-2017	Pag			
		Corn			Soybeans				
County	5-yr. avg. yield	5-yr. ave. yield + 10%	Avg. yield of 4 highest	5-yr. avg. yield	5-yr. ave. yield + 10%	Avg. y of 4 hig			
County	(bu/ac)	(bu/ac)	(bu/ac)	(bu/ac)	(bu/ac)	(bu)			
Adair	1/0	18/	1/8	50	55	54			
Adams	171	188	177	50	55	52			
Allamakee	182	200	187	53	58	53			
Appanoose	158	174	170	46	51	50			
Audubon	190	209	198	55	61	58			
Benton	190	209	197	55	60	57			
Black Hawk	188	207	194	55	60	56			
Boone	186	204	194	52	58	55			
Bremer	192	211	200	55	61	57			
Buchanan	191	210	197	54	60	56			
Buena Vista	185	203	191	54	59	56			

e 7

/ield ghest ac)

Legume Credit

Soybean: 1 lb N per bushel of yield up to 50 (Probably more of a rotation effect, than an N addition to the soil. But it works)

Alfalfa: 50-100% alfalfa = 100-140 lb N/acre 30 lb N/acre 2nd year 20-50% alfalfa = 50-80 lb N/acre

Crop Response (MRTN)

Corn Nitrogen Rate Calculator

Finding the Maximum Return To N and Most Profitable N Rate A Regional (Corn Belt) Approach to Nitrogen Rate Guidelines

State: Iowa Number of sites: 212 Rotation: Corn Following Soybean Non-Responsive Sites Not Included

Nitrogen Price (\$/lb): 0.50 Corn Price (\$/bu): 5.00 Price Ratio: 0.10

MRTN Rate (lb N/acre):	134
Profitable N Rate Range (lb N/acre):	122 - 146
Net Return to N at MRTN Rate (\$/acre):	\$238.83
Percent of Maximum Yield at MRTN Rate:	99%
Anhydrous Ammonia (82% N) at MRTN Rate (lb product/acre):	163
Anhydrous Ammonia (82% N) Cost at MRTN Rate (\$/acre):	\$67.00

Most profitable N rate is at the maximum return to N (MRTN). Profitable N rate range provides economic return within \$1/acre of the MRTN.

250

Calculating Application Rate

 So if we want 134 lb N/acre and our manure had 53 lb available N/1000 gallons, how much should be apply?

Application Rate = Demand/Supply

134 lb N/acre/ 53 lb N/1000 gallons = 2528 gallons/acre

Manure Example

- You have 700-head beef finishing operation on bedded pack.
- The manure sample said 30 lbs of total N and 45 lbs of P2O5 per ton. Assuming is nitrogen limited how much should you apply.
- How much phosphorus would be applied? Assuming you make this application raising 200 bushel per acre corn and 60 bushel and acre soybean?

you want to apply 150 pounds of nitrogen per acre, and your surface application

every other year, how does that compare to phosphorus removal rates if you are

Manure Example

- N Supply
 - 30 lb N/ton
 - First Year Availability 35%
 - Volatilization (22.5%) Retention = 77.5%
 - 30 lb N/ton x 0.35 x 0.775 = 8.1 lb N/ton
- N Demand
 - 150 lb N/acre / 8.1 lb N/ton = 18.5 tons/acre
- Application Rate
 - 150 lb N/acre / 8.1 lb N/ton
- P-Applied
 - 18.5 tons/acre x 45 lb P_2O_5 /ton = 833 lb P_2O_5 /acre
- P-Removed
 - 200 bu/acre x 0.32 lb $P_2O_5/bu + 60$ bu/acre x 0.72 lb $P_2O_5/bu = 107$ lb $P_2O_5/acre$

Do You Trust Manure?

"Every year I'm growing less confident on the N power in manure and would like to be able to just use it for my P needs and apply all commercial N"

What did manure users say?

What source of variability or uncertainty is the most important to you in selecting manure application rates?

Knowledge or consistency in nutrient content, . 35%

Ability to hit application rate (gallons or tons per acre), 12%

What did commercial manure applicators say?

What do you consider the most challenging in your role with clients using manure as a fertilizer?

Knowledge of or consistency in manure nutrient content, 22%

Ability to hit application rate (gallons or tons per acre), 8%

Uniformity of application, 17%

What do I say?

- It doesn't matter what I say, perception drives reality
- If your client, or you, believe that is where the issue is, that is where you will, and should pursue making an investment
- But, building trust in manure is an important part of YOUR role

Who cares about trust?

- Manure is a fertilizer, if you don't trust it, you want more N (insurance nitrogen)
- Hopefully farmers (crop advisors) evaluate the season and use information gained to improve next season. That means trusting what happened.
- Should we treat and separate fertilizer, or apply manure? I've resisted this approach – it is expensive (both monetarily, in in labor to operate)

But what I actually say* *subject to change

- Variation in Nitrogen Need in a Specific Year
- Ability to hit rate (lower rates)
- Field conditions after application
- Timing (except when it doesn't)
- Uniformity of application
- Nutrient Consistency

Manure Timing

March

In the shaded areas, the soil produces nitrate, but there is no crop to use it. As a result, some nitrate is lost to waterways.

Water Quality Impact

Nitrate-N concentrations in drainage water (mg/L)										
Crop	Year	EFM150NT	EFM150NT+R	LFM150NT	SPRING UAN150					
	2016	20.5a	11.3c	15.7b	12.0c					
Corn	2017	27.2a	12.0c	20.1b	13.2a					
	2018	12.3a	11.9a	11.2a	10.5a					
	Avg	20.0a	11.7c	15.6b	11.9bc					
	2016	10.9a	6.7b	12.0a	11.4a					
	2017	9.5ab	4.9c	8.7b	12.6a					
Soybean	2018	7.2bc	5.6c	8.3ab	9.5a					
	Avg	9.2b	5.7a	9.7b	11.2b					

Timing

Variation in Nitrogen Need

- CC - SC

mineralization rate (Ibs/acre/day) z

Variation in Nitrogen Need

Ability to Hit Rate

 But what if I ask for 3000 gallons an acre, or 2000 gallons an acre?

[a]

Comparison	of	target	manure	volume	based	on	pre-
applica	tion	sample	and actu	al volum	e applie	d. ^[a]	

	Target			Appl	ied		Weight
	Volu	me		Volu	me		Average
	(avera	ige)	_	(avera	age)	Change	for App
Year	L	gal		L	gal	(%)	Volur
2007	10,893	2878		11,291	2983	3.6	3.8
2008	12,067	3188		12,680	3350	5.1	4.1
2009	13,516	3571		13,501	3567	-0.1	1.5
2010	12,790	3379		13,176	3481	3.0	3.5
2011	12,237	3233		13,391	3538	9.4	2.8
2012	14,061	3715		13,713	3623	-2.5	2.8
2013	12,472	3295		13,372	3533	7.2	2.0
2014	11,276	2979		12,589	3326	11.6	4.7
Avg.	12,415	3280		12,964	3425	4.7	3.2

Target and applied volumes are based on the 18-plot average of three different target rates.

Ability to Hit Rate

Uniformity of Application

Manifold Performance

IOWA STATE UNIVERSITY Extension and Outreach

But what do we do with variability?

Application characteristic

Manure Type	Method	N Content	Availability	Volatilization	Rate	Uniformity	Timing
			%	56	- %	%	%
		6.01					
Liquid Swine	Inject	(0.33) 6.01	95 (5)	98 (1)	7 (4)	15 (5)	42 (26)
Liquid Swine	Broadcast	(0.33) 3.01	95 (5)	82.5 (7.5)	5 (2)	5 (5)	42 (26)
Liquid Dairy	Inject	(0.36) 3.01	40 (10)	98 (1)	5 (1)	10 (5)	42 (26)
Liquid Dairy	Broadcast	(0.36)	40 (10)	82.5 (7.5)	5(1)	5 (5)	42 (26)
Solid Layer	Incorporate	35 (S)	55 (5)	97 (2)	10 (5)	15 (5)	42 (26)
Solid Layer	Broadcast	35 (S)	55 (5)	77.5 (7.5)	10 (5)	15 (5)	42 (26)
Solid Beef	Incorporate	12 (3)	40 (10)	97 (2)	15 (7)	20 (5)	42 (26)
Solid Beef	Broadcast	12 (3)	40 (10)	77.5 (7.5)	15 (7)	20 (5)	42 (26)

IOWA STATE UNIVERSITY Extension and Outreach

Estimating Yield and Economic Impact

Methods

Develop a Stochastic N Supply Model calculated the overall mass of N available. The mass of nitrogen applied and available to support crop growth was calculated as: $M_N = V_K C_N A_N Q_N - L_N$ (Eq. 1) Where

M_N is the mass of plant available nitrogen supplied to support crop growth (kg N/ha). $V_{\rm K}$ is the volume of manure applied through each knife (m³/ha) C_N is the concentration of total nitrogen in the manure (kg N/m³). A_N is the percent of total nitrogen that becomes plant available in the growing season (kg N/kg N). Q_N is the percent of total nitrogen that doesn't volatilize (kg N/kg N) L_N is the loss in mass of nitrogen supplied as compared to spring application (kg N/ha)

The knife application rate was calculated as:

$$V_K = C_K V_T \qquad (Eq. 2)$$

Where

V_T is the volume of manure applied (m³/ha), and $C_{\rm K}$ is the coefficient of flow for that knife (m³/m³).

The mass of nitrogen lost between fall and spring application (L_N) was calculated as: $L_N = V_K C_N A_N Q_N (1 - N_F)$ (Eq. 3)

Yield estimated based of MRTN curve:

%Yield = 100 (1 - exp(-0.0172(x + 57.6)))

IOWA STATE UNIVERSITY Extension and Outreach

(Eq. 4)

Estimating Yield and Economic Impact

IOWA STATE UNIVERSITY Extension and Outreach

Contact Information

Daniel Andersen Associate Professor

dsa@iastate.edu

515.294.4210

 \mathbb{X}

www.abe.iastate.edu

DrManure

Iowa State Manure and Nutrient Management Lab

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY Extension and Outreach

Talkin' Crap

A podcast about science, technology, and best practices in manure management

Agricultural & Biosystems Engineering