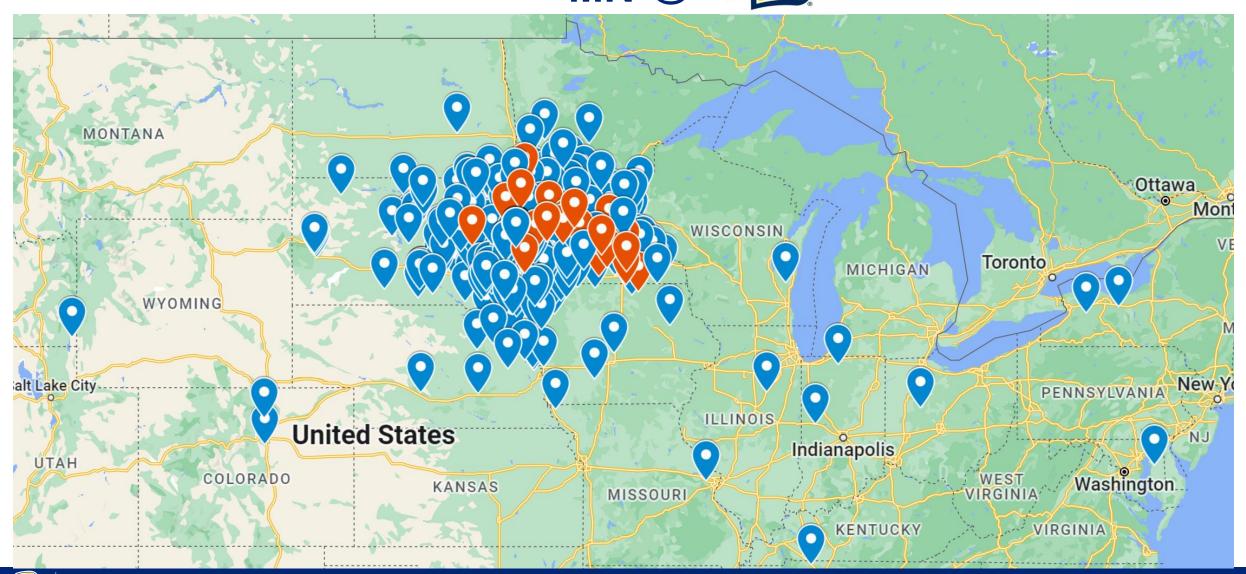
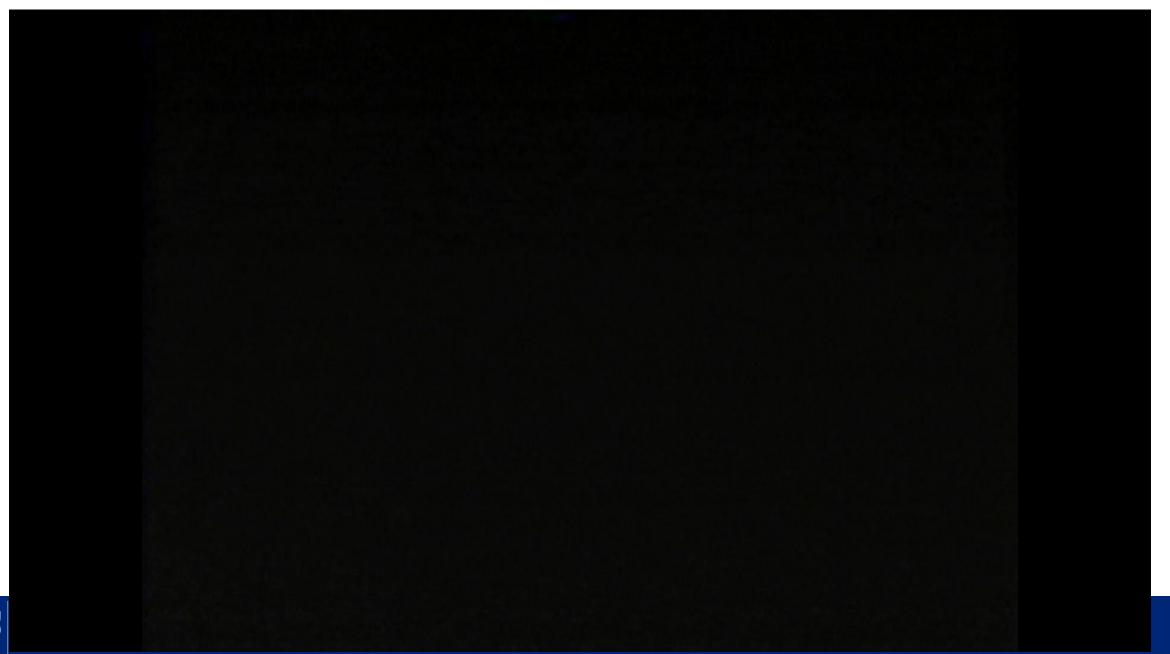


INTEGRATION OF SOIL TESTING AND PRECISION TECHNOLOGY

NIC UILK


- Ag Systems Technology
 - Precision Ag Emphasis
 - Introduction To Precision Ag course
- Precision Ag Minor added
- Precision Ag major added
- Raven Precision Ag Center

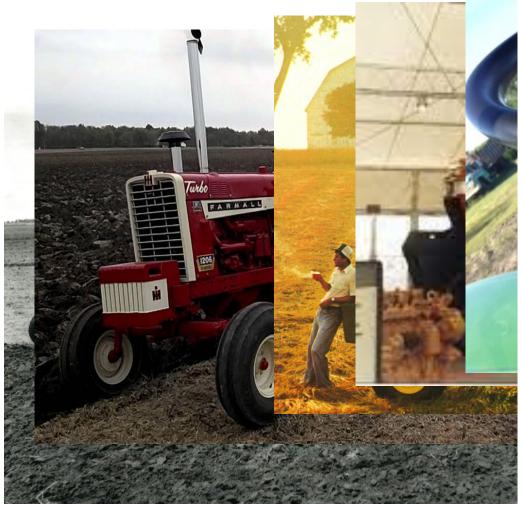
RAVEN PRECISION AG CENTER



MN @

PRECISION AG @ SDSU

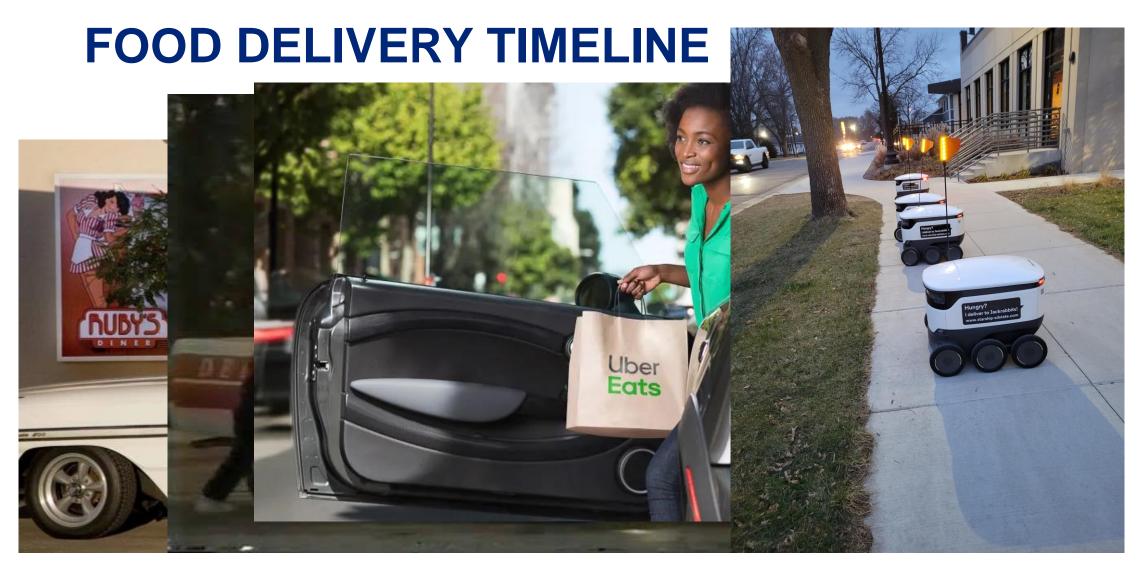
INTEGRATION OF SOIL TESTING AND PRECISION TECHNOLOGY


- Integration of soil testing and precision technology
- Integration of soil testing and precision technology
- Integration of soil testing and precision technology

•

THIS WAS A CHALLENGE!

AG POWER TIMELINE



Case IH, Raven Launch Autonomous Spreader

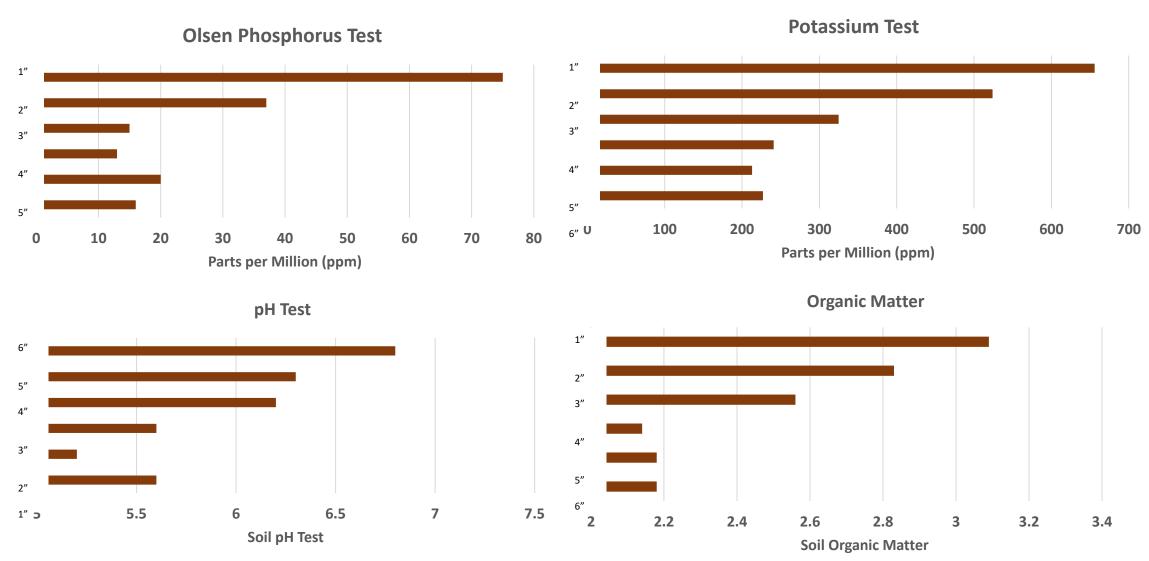
WHATS NEXT?

FARM DATA TIMELINE

SOIL NUTRIENT TIMELINE

SOIL SAMPLING ADVANCEMENTS

SOIL SAMPLING ADVANCEMENTS



AUTOMATED SAMLING

The obvious advantage...

THE MAIN ADVANTAGE

SOIL SAMPLING PRAG 203L

64 students pull 64 points each semester...

			Every .5" of soil= 164,666 lbs of soil!								
	epth	Olsen P	Potassium	pН	Organic Matter						
	A	32	391 _A .	B5.8). E. 2 .8						
1	В	30.5	375	6	2.7						
	C	29.3	364	6.3	2.6						
	D	28	350	6.4	2.4						
	E	27	344	6.5	2.4						

AUTOMATED SAMPLING REMOVES HUMAN ERROR

- Olsen P
 - 10 ppm
 - □ Cost: \$53/acre
 - 14 ppm
 - □ Cost: \$17.3/acre
 - Difference of \$46/acre

GRID SAMPLING ADOPTION HURDLES

FARMER ADOPTION OF SERVICES

Table 2, Q11: Farmer use of precision technologies, market area estimated by retailers.

	2017	2019	2020	2021	2022
Guidance/Autosteer	60%	66%	66%	76%	69%
Yield Monitor	-	69%	65%	75%	68%
Sprayer Section Controllers	-	56%	62%	65%	63%
Grid or Zone Soil Sampling	45%	52%	52%	60%	57%
VRT Lime Application	40%	41%	44%	56%	52%

Data obtained from Purdue Precision Ag Adoption Survey

PRAG 203 ECONOMICS OF VRA EXERCISE

						Fert			Fert	\$						Corn	\$ 6.00
	Yield goal	SEED	Seed \$/B	g Seed \$/ac	N	Р	K	N	Р	K	Total	Seed+Fert \$	Gross inc	Net		SB	\$ 14.00
Fertilize entire field based	180	32000	300	120	184	67	41	162.4	67.801	109 29.14417	259.3453	379.3452536	\$1,080.00	\$ 700.65			
on low yield goal rate	190	32000	300	120	184	67	41	162.4	67.801	109 29.14417	259.3453	379.3452536	\$1,140.00	\$ 760.65			flat VS.
	200	32000	300	120	184	67	41	162.4	67.801	109 29.14417	259.3453	379.3452536		\$ 820.65			variable rate
									_				——————————————————————————————————————	ertility rate	\$ 760.65		\$ (31.32)
- III II II II II	Gross inc			Net													
• •	0103	5 111		1 1	CL									t con 22			
on middle yield zon (f	4 00	20.0		¢ 70	0	_				1	_	24 /	22	\$ 691.33 \$ 781.31			
average), Low zone wi	31,08	SU.U	1 0	\$ 70	10.6	5				low	\$	31.3	52	\$ 781.33			
													f	ertility rate	\$ 771.33		\$ (20.64)
	51,20	0.0	00	\$ 79	1.9	7				med	S	20.6	54 II	Cremey race	\$ 12.55		V (20.01)
	-,-			Ψ , υ										Net			
Fertilizer application b	31,32	$0 \cap C$	\cap	\$ 88	2 2	a				high	Ċ	29.9	26	\$ 652.01			
on high yield goal, low	1,34	20.0		ې ه	5.2	פ				High	\$	25.3	70	\$ 772.01			
middle will be overapp						4		_					\$ 862.01				
		,	Var⊦	iable	Rat	e	\$ 79	1.9	7				1	ertility rate	\$ 762.01		(29.96)
							•										
Variable rate application,	Yield goal	SLLD		g Seed \$/ac	N	Р	K	N	Р	K	Total	Seed+Fert \$	Gross inc	Net			
low medium and high yield	180	32000	300	120	184	67	41	162.4	67.801			379.3452536	\$1,080.00	\$ 700.65		low	\$ 31.32
zones, seed and fert	200	34000	300	127.5	208	74	46	183.5826				408.0278623	\$1,200.00	\$ 791.97		med	\$ 20.64
matched to yield goal	220	36000	300	135	232	81	51	204.7652	67.801	109 29.14417	301.7105	436./10471		1.865.25	À 704	high	\$ 29.96
													Va	riable Rate	\$ 791.97		

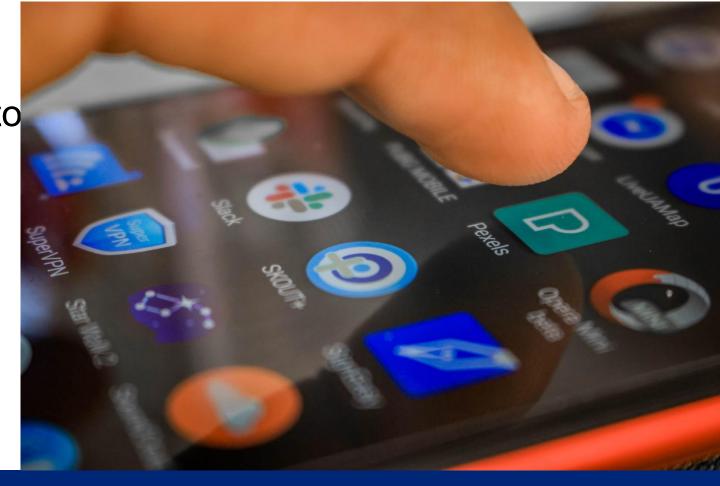
DEEPER LOOK AT PURDUE ADOPTION SURVEY

Table 2, Q11: Farmer use of precision technologies, market area estimated by retailers.

		2017	2019	2020	2021	2022		
VRT Fertilizer Application		38%	39%	44%	51%	49%		
	VRT Lime Application	40%	41%	44%	56%	52%		
Cato	Catallita or Aprial Imagent		26%	31%	27%	31%		
Sate	llite or Aerial Imagery	19%	20%	31%	2/%	31%		
	VRT Seeding	13%	19%	19%	23%	22%		
	Soil EC Mapping	9%	10%	14%	17%	19%		
Wired or Wireless Sensor Networks								

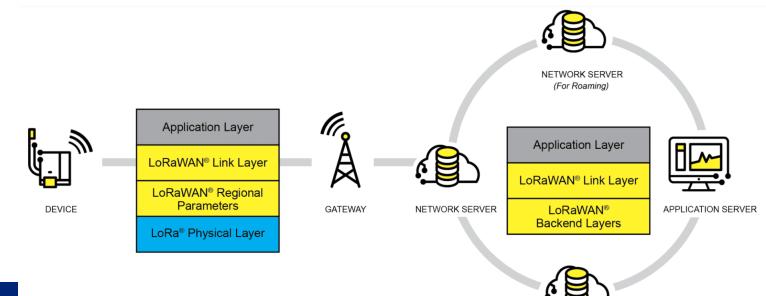
FROM PURDUE PRECISION AG SURVEY

Commercially available for over two decades, most dealers are still not offering soil electrical conductivity (EC) mapping or chlorophyll/greenness sensors such as Greenseeker, CropSpec, or OptRx. But 15% of dealers say they will be adding soil EC mapping and 17% plan to add chlorophyll/greenness sensors as part of their services three years out, perhaps a response related to recent increases in fertilizer prices.


LOOKING FORWARD, ARE CHANGES COMING?

It seems the desire to find the "easy button" is at an all

time high.


 There's nothing we can't find an answer to "right now"

• How might this effect the soil world?

WIRED OR WIRELESS SENSOR NETWORKS

- Currently soil moisture for irrigation purposes
- LoRaWAN will enable senor network expansion
 - 2.5 mile
 - Low battery requirement

JOIN SERVER

NPK SENSORS

Neufday Soil NPK Sensor, High Precision Soil Nutrient Intelligent Fertilizer Detector Tester Meter NPK Sensor

★★★★★ 1 \$82⁷⁷

Max485 Chip RS-485 Module TTL to RS-485 Module Raspberry Pi Pack of 5

★★★★ 81 \$699

Patio, Lawn & Garden > Gardening & Lawn Care > Plant & Soil Monitoring > Soil Meters

Taidacent RS485 Soil NPK PH Sensor Probe NPK Sensors Detector Meter for Agricultural Soil Nitrogen Tester (Soil nitrogen, Phosphorus and Potassium Moisture)

Visit the Taidacent Store

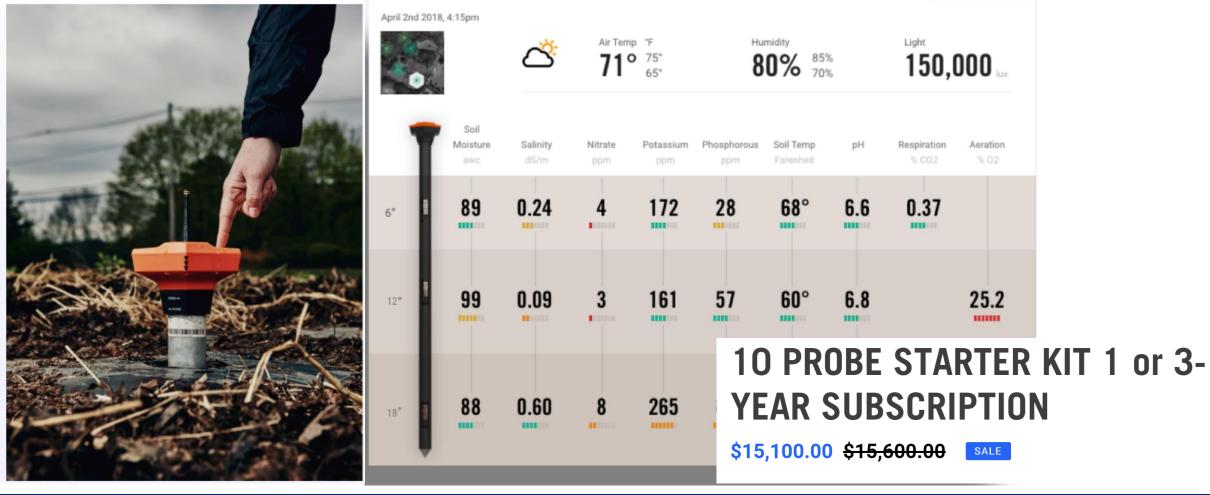
★★★☆ Y 4 ratings

\$14978

FREE Returns Y

Get \$60 off instantly: Pay \$89.78 \$149.78 upon approval for the Amazon Rewards Visa Card. No annual fee.

Color: Soil nitrogen, phosphorus and potassium



TERALYTIC NPK SENSORS

NPK SENSOR

LIBS NUTRIENT SENSOR

A new study using SciAps Z-300 LIBS shows handheld laser induced breakdown spectroscopy to be a promising sensor technique for the in-field determination of various soil parameters. The key to this new approach is moving LIBS out of the lab and to the work site. Read our interview with one of the German researchers advancing agricultural analysis.

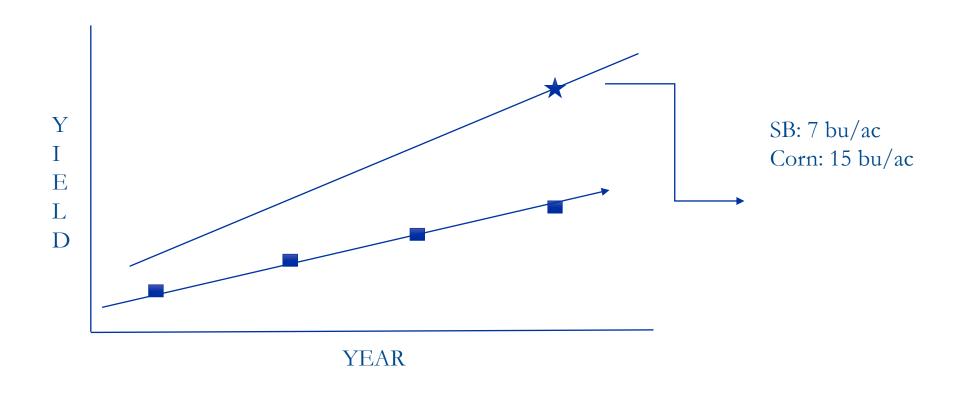
SOILOPTIX

Predictive Top Soil Mapping

Our gamma radiation-based sensor data is combined with strategically located physical soil samples as calibration, providing you with soil mapping results in high resolution top soil property layers.

PRECISION PLANTING RADICLE

AGRONOMICS



Radicle Lab™, the cornerstone of this new suite of tools, is the world's first fully automated soil laboratory. Its small footprint, self-calibration technolo and the ability to run hundreds of samples unattended allow agronomists to simplify their workflow. The revolutionary, patent-pending Microflow™ technology built into Radicle Lab™ removes all human touches which occ

ONE MORE PIECE OF INFORMATION FROM THE PURDUE SURVEY

 Twenty-three percent of dealers say they are currently offering crop inputs applied via a UAV/drone, a flying robot, just the second time for this question, but 45% expect to be offering this by 2025 (Figure 7).

YOUR IMPACT

THANK YOU

Nic Uilk Precision Ag Lecturer Nicholas.uilk@sdsate.edu

